Note on fractionation correction for Nd isotope ratios
(by K. Habfast, Bremen)

ABSTRACT

Recently, Caro et al. have published (Nature 423, p.428) highly precise Nd data from
Archean rocks (Ishua/Greenland), using the new TRITON mass spectrometer.

These data are so precise that they, for the first time, allow to safely assess the true nature
of the evaporation process of a sample, loaded on the evaporation filament of a thermal
ionisation ion source. As a matter of fact, evaporation follows the Rayleigh distillation law.
As a consequence, for such data it will be no more necessary to use empiric laws (like the
‘Exponential Law’ nor any 'second order' versions of it) to accurately correct for
fractionation.

INTRODUCTION

Caro et al. have used the ‘Exponential law’ for fractionation correction of their data, and
they write that ‘the exponential law is obviously the most appropriate to correct for Nd mass
fractionation’. - Nevertheless, after the correction, they observe a small ‘residual correlation’
between two fractionation corrected isotope ratios, if they plot 4214Nd vs. 1%%44Nd. They,
therefore, apply ( ‘in agrrement with Vance and Thirlwall’ ) a ‘second order’ correction
formula to remove these residual correlations. This 'empiric' second order procedure
substantially improves the external precision of the data, without changing the average
fractionation corrected ratio. However, they don't explain, how their simple correction
formula is (empirically?) derived.

In this short note we simulate the evaporation of a sample by assuming that it follows the
Rayleigh distillation law during evaporation. We then apply, for the aim of fractionation
correction, Exponential law correction procedures to these simulated data.

The result is, that we are able to quantitatively predict the residual correlations, observed by
Caro et al. Therefore, our conclusion is: The sample has followed Rayleigh’s distillation law
during evaporation and, consequently, it would be appropriate, to also apply a fractionation
correction algorithm which is derived from the Rayleigh fractionation process, as described
in K. Habfast, Int. J. Mass Spectr. 176 (1998) 133 - 148.

Due to the extremely high precision of the TRITON mass spectrometer, and the application
of extraordinary carefull experimental procedures, it is, in fact, the first time that the real
nature of the evaporation process of isotopes in a TIMS ion source can be directly
demonstrated, albeit the application of a ‘tricky’ indirect method. In so far, this work of the
Paris group is in a direct historic line with the pioneering paper of Russel, Papanastassiou
and Tombrello (Geochim. Cosmochim. Acta 42 (1978), 1075) which introduced the
'‘Exponential law' to the geochemistry community.

THE RAYLEIGH DisTILLATION LAW
The Rayleigh distillation law (in its explicit form) relates the observed isotope ratio r to the
mole fraction q of one of its isotopic species. If we define

__ioncurrent of the light species(m,)
~ ion current of the heavy species(my,)

and if

_ number of moles of the light species (n;)
O = "umber of moles of the light species at the beginning (njo)

We obtain r(q) = R*ﬁ*q%
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(1)



R is the ‘true’ isotope ratio of the sample before the start of the evaporation (i.e., if g = 1),

m
with ﬂ = Wh ,and we thus get r(1)=Rxf (i.e. r >R for a light to heavy ratio).

For (internal) fractionation correction of a given isotope ratio ry (true ratio Ry ), we need a
second isotope ratio (ry) in the same isotopic system, whose true ratio (Rn) is known.
Equ. 1 is valid for both ratios, and we can combine them by eliminating q.

Thus, we obtain the 'Rayleigh fractionation correction formula' :

Concerning X, it is important to follow the rule, to define both ratios in the 'same direction

Tu _ Bu
Ru = (Bn)X

r .
* (Ry)”

(2)

1

(light/heavy resp. heavy/light ), and to relate both ratios to the same mole fraction of a
given isotopic species. This requires that both ratios ( r, and ry ) have one isotopic species
in common. As a consequence of this strict requirement, we have to observe 4 different
definitions for exponent X, depending on the particular definition of the ratios :

common to both ratios

common to both ratios
(rU is the 'lower ratio).

common to both ratios
(rU is the 'upper' ratio).

_ PN Pu-1 _ fu-1 _ fu-1 _ pu-1
Xi=p * gt | Ke=Pnxpa| Xe=Purpq| Xa=p7
The lowest mass is | The 'middle’ mass is | The 'middle’ mass is The highest mass is

common to both ratio

The required conditions for the two ratios can, in rare cases, be fullfilled only with the help
of an "auxiliary' ratio. This, however, is no limitation.

Remark : The above conditions for the definition of the ratios can be circumvented, if the general
Rayleigh equation is choosen, in which the true ratio of the unknown species (Ry) is given in an
implicit form. This, however, requires the application of an iterative procedure to solve the equation (
K. Habfast, Int. J. Mass Spectr. 176 (1997) p 135, equ. (9¢) ).

SIMULATION OF NEODYMIUM ISOTOPIC EVAPORATION AND FRACTIONATION.
We consider the isotopic system [142...144...146...150]-Nd (see Fig.1) and we define three
(light/heavy) - ratios, namely: r1: [**2/144] ; In: [¥*41146] @and ra: [***/1s0] .

142 144 146 150
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Fig. 1.

r'n is the normalising ratio for the other two ratios.



First of all, we need to relate all three ratios to the mole fraction of the same isotope. We
arbitrarily, select the lightest species [142] . In order to get this species as a base for the
mole fractionsof all ratios, we use two auxiliary ratios, namely

JH=T1*IN resp. 'y =11 % I3. With proper application of (Equ. 1) we thus get the so
called '‘evaporation profiles' r=f(q), q being the mole fraction of the [142] - species:

ri(@) =Rixf1xgP  with p =— (3)
— PN . _ pAn-1
rn(Q) =Rn * fn * Q with Py = 57
= P3 i = Sl
rs(g) =Rz * fi3xq with  P3 =4 4 (5)
By application of the Exponential Law:
In(81) In(83)
N _ /N7y r3 — /IN\T=5y
R =R ®) resp. & =(R)™Y M

we finally will obtain the fractionation corrected true ratios R 1 resp. Rs.

As all observed isotope ratios are varying with time (i.e. with the evaporated amount of
sample), it is expected that fractionation correction fulfills two basic requirements:

a) The corrected ratios must be independent from time, and

b) the corrected ratios must numerically reflect the true ratio of the sample, i.e the isotope
ratio of the sample before any evaporation (fractionation) has taken place.

It has been shown by the author that the Exponential law and the Rayleigh law lead to very
similar results, but both laws nevertheless show important differences. But these are so
small, that highly precise data are required for a differentiation between the two laws.

Indeed, the application of the Exponential Law ( equ (6), equ (7) ) to data which evaporate
according to the Rayleigh distillation law (equ(3) .. (5)), leeds to results, in which the 'true'

values are still slightly time dependent after the correction, and they reflect the true value
only, if they are extrapolated to the beginning of the measurement. The explicit equations
(for the dependence of the 'true’ ratio from time) are as follows:

Si() =Ry x qPrECPy (g) Er=qps  (©
33(q) =Rz % qps- Es*pN (10) E; = ::((ﬁﬁz)) (11)

This dependence is shown in the following graph (Fig. 2), using normalised values
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Rs has been inverted in the plot, corresponding to the definition of R by the Paris group.
Appearantly, the 'normalised ratios' still slightly depend on time (the X-axes is the mole
fraction of the sample which is still on the filament at the time of the measurement).

In summary:
S1(q) is 'overcompensated' by normalisation, whereas 1/S3(q) is not fully compensated.

Therefore: The run means of each ratio also will depend on time, i.e., on the amount of
sample which is left on the filament at the time, at which the run was terminated.

Given the amount g. , at which the run has been stopped, the run means SM1(qg.) of S1(q)
or SM3(qe) of S3(q), respectively, are as follows (with integration limits from ge ... 1):

SM1(0e) = T * I Si(q) * dg = m % (1- q€Y) (X1=p1- Ezxpn)  (12)

SM3(ge) = %qe * | S3(g) *dg = m % (1- q€Y) Xs=p3- Esxpn) (13)

In Fig. S1(a) of the 'supplementary information’ for their paper, Caro et al. have plotted the
exponentially fractionation corrected run means of a total of 32 sample runs of an AMES
Nd-Standard. These run means are listed in Table S1 of the 'supplementary information'.
The span of the *?Nd/***Nd and *°Nd/***Nd means is ~22ppm or ~66ppm, respectivly.

In the next graph we have plotted the simulated residual correlations of SMi(ge) Vvs.
1/SMs(qe), together with the measured data of Table S1 of the Caro et al. paper.
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This figure looks like a copy of Fig. S1 (a) in the 'supplementary information'.
The slope of the simulated 'residual correlations', is 1.72 , the same as the slope of the
actually measured data, as shown in Fig. S1(a).

However: The green line is the result of a simulation, whereas the (blue) diamonds
represent real measurements. The (red) circle marks the (measured) overall mean of all 32
sample runs (from Table S1). Hence, our statement:

The samples of the Caro et al. paper evaporated according to the Rayleigh law,
and hence, the advice:
If they would be fractionation corrected with the Rayleigh formulae,
no empiric second order correction would be necessary.

The red squares on the simulated green line mark the sample consumption in steps of
10%. Hence, for the 'heaviest' sample (Nr. K6) less than 10% of the loaded sample were
used up, and the run with the 'lightest' sample (A13) consumpted almost 70%.

If one combines equ. (8) and equ. (10) by eliminating g, one obtains:

P1-E1xp
S0 _ (S0, B "

This simulates equation (4) on page 431 of the Caro paper.

Its exponent has a value of -0.355.

Note: There seems to be a conflict between the simulation and the exponent

of the 'empiric second order correction' formula of Caro et al..

It can be solved quite easily: In the Caro paper, ratio R3 is defined reversely. Hence, their
exponent must be is positive.

Discussion.
Experimental details for the individual runs are not given in the Paris paper, but some
conclusions can, nevertheless, be drawn.

If the same amount of sample would have been loaded in each run, and if the
ion-current-time-profile would have been the same for all sample runs, then the longest run
would have been ~7 times longer than the shortest one in the series of 32 runs, because
sample consumption differs by a factor of appro. 7 (between K6 and A13).

This is very unlikely. Hence,

* (a) We speculate: The loaded amount of sample and, probably, the ion-current-time
profile were different for each run, whereas the length of the runs might have been
more or less comparable.

* (b) In any case, and this is no speculation, the published data proof that the Paris
group has mastered the (black?) art of keeping sample evaporation from a filament
reproducible from run to run in an extraordinary way, albeit the use of remarkably
different sample loadings.

If a) and b) would not be the case, we would not have any chance to detect the differences
between the Exponential and the Rayleigh law fractionation (chance or necessity?).



To draw a reliable regression line through data over a data range of approx. 30 ppm only
requires an external precision of better than 5 ppm (std dev). This is out of the range of
most, if not all data which | have seen up to now.

Just for completeness:
For performing the actual Rayleigh correction, one would use equ (2), with the following
exponents:

Xz for #2Nd/***N  and  X; for ***Nd/***Nd.

Warning:

If the linearised Rayleigh fractionation law, which | have described earlier (1984), is used to
normalise Rayleigh type evaporation data, one would also obtain

'residual correlations' for the corrected data. They fall on a curved line, as shown in the
following graph:
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Remark: All simulations have been performed using MATCAT (Version 7).



